Valves are essential components in various industrial applications, including the processing of oil and gas, water treatment, power generation, and chemical manufacturing. They control the flow of liquids, gases, and other materials through pipelines, ensuring that the process runs smoothly and safely. When it comes to purchasing industrial valves, it’s essential to consider several factors to ensure you’re making the right decision. In this blog post, we’ll guide you through the process of buying industrial valves and help you make an informed purchase.
SUPCON Product Page
The first step in buying industrial valves is to determine the type of valve that is appropriate for your application. There are several types of industrial valves, including ball valves, gate valves, globe valves, check valves, and diaphragm valves, among others. Each type of valve is designed to perform specific functions, and choosing the right type will depend on the characteristics of the fluid or material you’re handling, the temperature and pressure of the system, and the level of control you need.
Another important factor to consider when buying industrial valves is the size and pressure rating. Valves come in different sizes and pressure ratings, and you must choose the appropriate size and pressure rating for your system. The size of the valve is determined by the diameter of the pipeline it will be installed on, and the pressure rating will depend on the maximum pressure the valve can withstand without failing. It’s essential to choose a valve with the correct size and pressure rating to ensure it operates safely and effectively.
When purchasing industrial valves, it’s essential to ensure that they meet relevant certifications and compliance requirements. This will help you avoid purchasing substandard products that may fail prematurely or pose a safety hazard. The most common certifications for industrial valves include API, ISO, and CE. Make sure the valve you choose meets the necessary certifications and standards for your industry and application.
The reputation of the manufacturer is another important factor to consider when buying industrial valves. You want to purchase valves from a reputable manufacturer with a history of producing high-quality products. Look for manufacturers with a solid track record of producing valves that are reliable, safe, and durable. You can research the manufacturer’s history and customer feedback to get a better understanding of its reputation.
The cost of industrial valves is another important factor to consider, and it’s essential to find a balance between price and quality. While it may be tempting to opt for the cheapest option, this may not always be the best decision in the long run. High-quality valves can be more expensive, but they are typically more reliable and will last longer, saving you money in the long run.
Process plant operations involve many rigorous tasks requiring the highest level of measurement and control performance. Control valve technology, in particular, plays a vital role in production processes. Valves are the most important single element in any fluid handling system because they regulate the flow of fluid to the process.
This article describes the importance of proper control valve sizing and selection to manufacturing efficiency, reliability, quality and safety. When choosing a valve to meet a specific application requirement, and considering key factors such as sizing and trim materials, it is wise to consult with a qualified valve engineer capable of analyzing the application to ensure that the right device is chosen and deployed appropriately.
Process industry manufacturers are trying to stay on top of industry changes more than ever — maintaining utmost product quality and meeting and exceeding increasingly stringent safety regulations are just two of the challenges they face. They must implement effective manufacturing techniques, which are cost-efficient, time-saving and reliable.
Control valves are employed in many different ways in a typical plant. They are controlled devices that regulate the flow of a liquid or gas in a system. The varying resistance that the valve introduces into the system as it is stroked accomplishes this regulation. As the valve modulates to the closed position, the system pressure drop shifts to the valve and reduces the flow in the system (See Image 2).
Modern control valve designs allow them to be used simply as an on-and-off device, or for any combination of controlling to include regulation, modulation, mixing or even isolation. They are a highly engineered product and should not be treated simply as a commodity. Addressing control valve performance has a dramatic effect on process plant efficiency, overall profitability and asset life cycle costs.
When engineers talk about control valve sizing, they generally refer to the entire process of selecting equipment that will provide an optimal solution for a specified measurement and control function. Indeed, choosing a properly sized valve is essential to achieving the highest degree of control for the liquid, gas or multiphase fluid.
The style of control valve is usually determined by the user’s requirements, past experiences or plant preference. Valve selection can be a tricky process, but sizing the valve can be even more difficult. Valves are often incorrectly specified at the time of installation.
The most important variables to consider when sizing a valve include:
The required flow rate the valve must pass and the pressure drop that can be allowed across the instrument typically govern its sizing for a particular duty. For example, an undersized valve does not have the capacity to pass the required flow, and thus cannot offer good control performance. It will typically lead to saturation-type non-linearities. The valve can only control the process in one direction (closing the valve) and it is likely that the process variable will not attain set point.
Control valves are frequently sized based on a future maximum process design plus a safety factor. This leads to specifying, buying and maintaining a larger device than is needed for the flow rate, and results in imprecise control and poor production outcomes. An oversized valve is very sensitive to operating conditions. Even the smallest changes in valve position will cause significant changes in flow. This makes it difficult or even impossible for the valve to exactly adjust to the required flow.
When sizing a control valve, the general rule is to size it so that it operates between 20 to 80 percent open at maximum required flow rate and whenever possible, only slightly less than 20 percent open at the minimum required flow rate. This approach is intended to use as much of the valve’s control range as possible while maintaining a reasonable (but not excessive) safety factor. Properly sized globe valves, for instance, are usually one size smaller than the line.
Experience shows there is no substitute for working with a knowledgeable expert to ensure the correct valves are specified for a given installation. The problem with just filling out the specification sheet is that optimal valve or process performance is not guaranteed, even if the spec sheet is filled out correctly. When valves misbehave and the result is poor process control, the root cause of the problem is likely an inadequate selection process.
The company is the world’s best Cage guided valve supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
After a high level of performance is achieved through proper valve sizing, how can it be maintained? A control valve behaves much like other mechanical devices. Over time, wear gradually decays control performance. If left unchecked, this decay can eventually lead to failure, downtime on production lines, and unanticipated costs for spare parts and repair.
The internal elements of a control valve (collectively referred to as its "trim") are a crucial consideration in the valve selection process. Valve trim typically includes a disc, seat and stem, as well as the sleeves needed to guide the stem. The disc and seat interface, along with the relation of the disc position to the seat, normally determines a valve’s performance.
A control valve’s trim can be selected to create a variety of passage shapes that control the flow in deliberate ways. The valve opens the gap by moving the plug, disc or valve away from the seat. The length of the stroke determines the opening size and how much liquid, gas or vapor passes the seat. By altering the size of the internal gap, the control valve increases, decreases or holds steady the flow through itself. The valve alters the opening whenever the process parameter, or variable, being controlled does not equal the value it is meant to be (i.e., the set point).
Erosion, or the gradual reduction and weakening of valve bodies or trim components resulting from severe process conditions, is a significant problem in modern manufacturing plants. Typical damage includes seal ring and gasket loss; stem, body and trim retainer wear on the seat ledge; plug, seat ring and cage wear; and packing leakage.
Several common reasons for premature trim wear in control valves exist. For example, flashing occurs when the pressure of a fluid falls below its vapor pressure, changing from a liquid to a vapor. During this process, small vapor cavities form that grind away at the outlet of the valve and its trim components. Cavitation is similar to flashing, except the fluid pressure recovers to a pressure that is above its vapor pressure. This causes the previously formed vapor cavities to implode, producing impinging jets with the potential to cause severe erosive damage. Outgassing occurs when the pressure of a fluid drops below the saturation pressure of a dissolved gas. Once this point is reached, the gas separates from the solution and produces high-velocity, erosive vapor droplets.
Depending on the type of supply, the globe valve’s disc is moved by a hydraulic, pneumatic, electrical or mechanical actuator. The valve modulates flow through movement of a valve plug in relation to the port(s) located within the valve body. The valve plug is attached to a valve stem, which is connected to the actuator.
Some globe valve designs feature a bolted bonnet and post-guided inner valve. They are well-suited for modulating control of liquids and vapors in environments where compact size, coupled with the ability to withstand high temperature and pressure, are essential (See Image 3).
Globe valves meet demanding process application requirements because of the quality and precision tuning of their trim components. For example, valves are available with pre-formed diaphragm and multisprings to ensure extremely linear travel versus input signal performance. Plus, valves utilizing a single O-ring and Nylatron guide bushing provide minimum hysteresis. Technicians can adjust the spring preload to suit specific closing force requirements and make use of adjustable travel stops.
A significant improvement in control valve technology is the implementation of 316 stainless steel for trim material such as the valve body, bonnet and inner valve. This ensures longer trim life, and as such, less downtime and lower device repair and replacement costs. The most common stainless steel on the market, 316 is an austenitic grade with the addition of 2 to 3 percent molybdenum, which further improves corrosion resistance. It is often referred to as a marine-grade stainless steel because of its effective resistance to chloride corrosion in comparison to other stainless steel grades. The material also has superior welding and forming qualities.
Many users choose to mate globe valves to high-accuracy, electropneumatic I/P positioners to position the device based on a 4-20 mA control signal. The latest generation of I/P positioners delivers fully automatic determination of the control parameters and adaptation to the final control element.
A demanding business environment calls for the most reliable and accurate control of production processes possible. Failure to meet specific operating standards can have serious consequences for quality and safety, while running an inefficient operation can significantly affect the financial margins for the product. In both cases, optimal control valve performance is vital.
Industrial organizations will benefit from working closely with their manufacturer representative or instrumentation supplier to specify an appropriate measurement and control solution. This collaboration can meet important performance criteria such as:
Control valves must withstand the erosive effects of the flowing fluid while holding an accurate position to maintain the process variable. A valve will perform these tasks satisfactorily if it is sized correctly for the application, and designed and built in a way that is appropriate for the process service conditions.
There is no doubt that enhanced control valve technology helps all kinds of manufacturers continually improve process efficiency and product quality, while safeguarding people, plant assets and the environment. The right solution can support a comprehensive system to track every step of the manufacturing process.
Key to the outcome of any control valve project is the assistance of qualified engineers, who analyze the application to ensure the right instruments are selected and sized correctly. Valve manufacturers that understand control performance can share those capabilities and show they can conform to a user’s performance specifications.
Brian Kettner is marketing manager for Badger Meter. He has more than 14 years of experience in fluid system technology, combining marketing, sales and product development roles, with a focus on the processing industry. Currently, Kettner manages Research Control Valve and Preso differential pressure product lines for Badger Meter.
Badger Meter
If you are looking for more details, kindly visit 3 way globe valve.