A scintillator ( SIN-til-ay-ter) is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbed energy in the form of light).[a] Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed (necessitating anywhere from a few nanoseconds to hours depending on the material). The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.
If you want to learn more, please visit our website.
A scintillation detector or scintillation counter is obtained when a scintillator is coupled to an electronic light sensor such as a photomultiplier tube (PMT), photodiode, or silicon photomultiplier. PMTs absorb the light emitted by the scintillator and re-emit it in the form of electrons via the photoelectric effect. The subsequent multiplication of those electrons (sometimes called photo-electrons) results in an electrical pulse which can then be analyzed and yield meaningful information about the particle that originally struck the scintillator.
Vacuum photodiodes are similar but do not amplify the signal while silicon photodiodes, on the other hand, detect incoming photons by the excitation of charge carriers directly in the silicon. Silicon photomultipliers consist of an array of photodiodes which are reverse-biased with sufficient voltage to operate in avalanche mode, enabling each pixel of the array to be sensitive to single photons.[citation needed]
The first device which used a scintillator was built in , by Sir William Crookes and used a ZnS screen. The scintillations produced by the screen were visible to the naked eye if viewed by a microscope in a darkened room; the device was known as a spinthariscope. The technique led to a number of important discoveries but was obviously tedious. Scintillators gained additional attention in , when Curran and Baker replaced the naked eye measurement with the newly developed PMT. This was the birth of the modern scintillation detector.
Scintillators are used by the American government as Homeland Security radiation detectors. Scintillators can also be used in particle detectors, new energy resource exploration, X-ray security, nuclear cameras, computed tomography and gas exploration.
Other applications of scintillators include CT scanners and gamma cameras in medical diagnostics, and screens in older style CRT computer monitors and television sets. Scintillators have also been proposed as part of theoretical models for the harnessing of gamma-ray energy through the photovoltaic effect, for example in a nuclear battery.
The use of a scintillator in conjunction with a photomultiplier tube finds wide use in hand-held survey meters used for detecting and measuring radioactive contamination and monitoring nuclear material. Scintillators generate light in fluorescent tubes, to convert the ultra-violet of the discharge into visible light. Scintillation detectors are also used in the petroleum industry as detectors for Gamma Ray logs.
There are many desired properties of scintillators, such as high density, fast operation speed, low cost, radiation hardness, production capability, and durability of operational parameters. High density reduces the material size of showers for high-energy γ-quanta and electrons. The range of Compton scattered photons for lower energy γ-rays is also decreased via high density materials. This results in high segmentation of the detector and leads to better spatial resolution. Usually high density materials have heavy ions in the lattice (e.g., lead, cadmium), significantly increasing the contribution of photoelectric effect (~Z4). The increased photo-fraction is important for some applications such as positron emission tomography.
High stopping power for electromagnetic component of the ionizing radiation needs greater photo-fraction; this allows for a compact detector. High operating speed is needed for good resolution of spectra. Precision of time measurement with a scintillation detector is proportional to √τsc. Short decay times are important for the measurement of time intervals and for the operation in fast coincidence circuits. High density and fast response time can allow detection of rare events in particle physics. Particle energy deposited in the material of a scintillator is proportional to the scintillator's response.
Charged particles, γ-quanta and ions have different slopes when their response is measured. Thus, scintillators could be used to identify various types of γ-quanta and particles in fluxes of mixed radiation. Another consideration of scintillators is the cost of producing them. Most crystal scintillators require high-purity chemicals and sometimes rare-earth metals that are fairly expensive. Not only are the materials an expenditure, but many crystals require expensive furnaces and almost six months of growth and analyzing time. Currently, other scintillators are being researched for reduced production cost.
Several other properties are also desirable in a good detector scintillator: a low gamma output (i.e., a high efficiency for converting the energy of incident radiation into scintillation photons), transparency to its own scintillation light (for good light collection), efficient detection of the radiation being studied, a high stopping power, good linearity over a wide range of energy, a short rise time for fast timing applications (e.g., coincidence measurements), a short decay time to reduce detector dead-time and accommodate high event rates, emission in a spectral range matching the spectral sensitivity of existing PMTs (although wavelength shifters can sometimes be used), an index of refraction near that of glass (≈1.5) to allow optimum coupling to the PMT window. Ruggedness and good behavior under high temperature may be desirable where resistance to vibration and high temperature is necessary (e.g., oil exploration). The practical choice of a scintillator material is usually a compromise among those properties to best fit a given application.
Among the properties listed above, the light output is the most important, as it affects both the efficiency and the resolution of the detector (the efficiency is the ratio of detected particles to the total number of particles impinging upon the detector; the energy resolution is the ratio of the full width at half maximum of a given energy peak to the peak position, usually expressed in %). The light output is a strong function of the type of incident particle or photon and of its energy, which therefore strongly influences the type of scintillation material to be used for a particular application.
The presence of quenching effects results in reduced light output (i.e., reduced scintillation efficiency). Quenching refers to all radiationless de‑excitation processes in which the excitation is degraded mainly to heat. The overall signal production efficiency of the detector, however, also depends on the quantum efficiency of the PMT (typically ~30% at peak), and on the efficiency of light transmission and collection (which depends on the type of reflector material covering the scintillator and light guides, the length/shape of the light guides, any light absorption, etc.). The light output is often quantified as a number of scintillation photons produced per keV of deposited energy. Typical numbers are (when the incident particle is an electron): ≈40 photons/keV for NaI(Tl), ~10 photons/keV for plastic scintillators, and ~8 photons/keV for bismuth germanate (BGO).
Scintillation detectors are generally assumed to be linear. This assumption is based on two requirements: (1) that the light output of the scintillator is proportional to the energy of the incident radiation; (2) that the electrical pulse produced by the photomultiplier tube is proportional to the emitted scintillation light. The linearity assumption is usually a good rough approximation, although deviations can occur (especially pronounced for particles heavier than the proton at low energies).
Resistance and good behavior under high-temperature, high-vibration environments is especially important for applications such as oil exploration (wireline logging, measurement while drilling). For most scintillators, light output and scintillation decay time depends on the temperature. This dependence can largely be ignored for room-temperature applications since it is usually weak. The dependence on the temperature is also weaker for organic scintillators than it is for inorganic crystals, such as NaI-Tl or BGO. Strong dependence of decay time on the temperature in BGO scintillator is used for remote monitoring of temperature in vacuum environment. The coupled PMTs also exhibit temperature sensitivity, and can be damaged if submitted to mechanical shock. Hence, high temperature rugged PMTs should be used for high-temperature, high-vibration applications.
The time evolution of the number of emitted scintillation photons N in a single scintillation event can often be described by linear superposition of one or two exponential decays. For two decays, we have the form:
N = A exp ( − t τ f ) + B exp ( − t τ s ) {\displaystyle N=A\exp \left(-{\frac {t}{{\tau }_{f}}}\right)+B\exp \left(-{\frac {t}{{\tau }_{s}}}\right)}
where τf and τs are the fast (or prompt) and the slow (or delayed) decay constants. Many scintillators are characterized by 2 time components: one fast (or prompt), the other slow (or delayed). While the fast component usually dominates, the relative amplitude A and B of the two components depend on the scintillating material. Both of these components can also be a function of the energy loss dE/dx. In cases where this energy loss dependence is strong, the overall decay time constant varies with the type of incident particle. Such scintillators enable pulse shape discrimination, i.e., particle identification based on the decay characteristics of the PMT electric pulse. For instance, when BaF2 is used, γ rays typically excite the fast component, while α particles excite the slow component: it is thus possible to identify them based on the decay time of the PMT signal.
Organic scintillators are aromatic hydrocarbon compounds which contain benzene ring structures interlinked in various ways. Their luminescence typically decays within a few nanoseconds.
Some organic scintillators are pure crystals. The most common types are anthracene (C
14H
10, decay time ≈30 ns), stilbene (C
14H
12, 4.5 ns decay time), and naphthalene (C
10H
8, few ns decay time). They are very durable, but their response is anisotropic (which spoils energy resolution when the source is not collimated), and they cannot be easily machined, nor can they be grown in large sizes; hence they are not very often used. Anthracene has the highest light output of all organic scintillators and is therefore chosen as a reference: the light outputs of other scintillators are sometimes expressed as a percentage of anthracene light output.
These are liquid solutions of one or more organic scintillators in an organic solvent. The typical solutes are fluors such as p-terphenyl (C
18H
14), PBD (C
20H
14N
2O), butyl PBD (C
24H
22N
2O), PPO (C
15H
11NO), and wavelength shifter such as POPOP (C
24H
16N
2O). The most widely used solvents are toluene, xylene, benzene, phenylcyclohexane, triethylbenzene, and decalin. Liquid scintillators are easily loaded with other additives such as wavelength shifters to match the spectral sensitivity range of a particular PMT, or 10B to increase the neutron detection efficiency of the scintillation counter itself (since 10B has a high interaction cross section with thermal neutrons). Newer approaches combine several solvents or load different metals to achieve identification of incident particles.[12][13] For many liquids, dissolved oxygen can act as a quenching agent and lead to reduced light output, hence the necessity to seal the solution in an oxygen-free, airtight enclosure.
The term "plastic scintillator" typically refers to a scintillating material in which the primary fluorescent emitter, called a fluor, is suspended in the base, a solid polymer matrix. While this combination is typically accomplished through the dissolution of the fluor prior to bulk polymerization, the fluor is sometimes associated with the polymer directly, either covalently or through coordination, as is the case with many Li6 plastic scintillators. Polyethylene naphthalate has been found to exhibit scintillation by itself without any additives and is expected to replace existing plastic scintillators due to higher performance and lower price.
The advantages of plastic scintillators include fairly high light output and a relatively quick signal, with a decay time of 2–4 nanoseconds, but perhaps the biggest advantage of plastic scintillators is their ability to be shaped, through the use of molds or other means, into almost any desired form with what is often a high degree of durability. Plastic scintillators are known to show light output saturation when the energy density is large (Birks' Law).
The most common bases used in plastic scintillators are the aromatic plastics, polymers with aromatic rings as pendant groups along the polymer backbone, amongst which polyvinyltoluene (PVT) and polystyrene (PS) are the most prominent. While the base does fluoresce in the presence of ionizing radiation, its low yield and negligible transparency to its own emission make the use of fluors necessary in the construction of a practical scintillator. Aside from the aromatic plastics, the most common base is polymethylmethacrylate (PMMA), which carries two advantages over many other bases: high ultraviolet and visible light transparency and mechanical properties and higher durability with respect to brittleness. The lack of fluorescence associated with PMMA is often compensated through the addition of an aromatic co-solvent, usually naphthalene. A plastic scintillator based on PMMA in this way boasts transparency to its own radiation, helping to ensure uniform collection of light.
Other common bases include polyvinyl xylene (PVX) polymethyl, 2,4-dimethyl, 2,4,5-trimethyl styrenes, polyvinyl diphenyl, polyvinyl naphthalene, polyvinyl tetrahydronaphthalene, and copolymers of these and other bases.
Also known as luminophors, these compounds absorb the scintillation of the base and then emit at larger wavelength, effectively converting the ultraviolet radiation of the base into the more easily transferred visible light. Further increasing the attenuation length can be accomplished through the addition of a second fluor, referred to as a spectrum shifter or converter, often resulting in the emission of blue or green light.
Common fluors include polyphenyl hydrocarbons, oxazole and oxadiazole aryls, especially, n-terphenyl (PPP), 2,5-diphenyloxazole (PPO), 1,4-di-(5-phenyl-2-oxazolyl)-benzene (POPOP), 2-phenyl-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD), and 2-(4’-tert-butylphenyl)-5-(4’’-biphenylyl)-1,3,4-oxadiazole (B-PBD).
Inorganic scintillators are usually crystals grown in high temperature furnaces, for example, alkali metal halides, often with a small amount of activator impurity. The most widely used is NaI(Tl) (thallium-doped sodium iodide); its scintillation light is blue. Other inorganic alkali halide crystals are: CsI(Tl), CsI(Na), CsI(pure), CsF, KI(Tl), LiI(Eu). Some non-alkali crystals include: BGO, BaF
2, CaF
2(Eu), ZnS(Ag), CaWO
4, CdWO
4, YAG(Ce) (Y
3Al
5O
12(Ce)), GSO, LSO, GAGG:Ce. (For more examples, see also phosphors).[18]
Newly developed products include LaCl
3(Ce), lanthanum chloride doped with cerium, as well as a cerium-doped lanthanum bromide, LaBr
3(Ce). They are both very hygroscopic (i.e., damaged when exposed to moisture in the air) but offer excellent light output and energy resolution (63 photons/keV γ for LaBr
3(Ce) versus 38 photons/keV γ for NaI(Tl)), a fast response (16 ns for LaBr
3(Ce) versus 230 ns for NaI(Tl) ), excellent linearity, and a very stable light output over a wide range of temperatures. In addition LaBr3(Ce) offers a higher stopping power for γ rays (density of 5.08 g/cm3 versus 3.67 g/cm3 for NaI(Tl) ). LYSO (Lu
1.8Y
0.2SiO
5(Ce)) has an even higher density (7.1 g/cm3, comparable to BGO), is non-hygroscopic, and has a higher light output than BGO (32 photons/keV γ), in addition to being rather fast (41 ns decay time versus 300 ns for BGO).
A disadvantage of some inorganic crystals, e.g., NaI, is their hygroscopicity, a property which requires them to be housed in an airtight container to protect them from moisture. CsI(Tl) and BaF2 are only slightly hygroscopic and do not usually need protection. CsF, NaI(Tl), LaCl
3(Ce), LaBr
3(Ce) are hygroscopic, while BGO, CaF
2(Eu), LYSO, and YAG(Ce) are not.
Inorganic crystals can be cut to small sizes and arranged in an array configuration so as to provide position sensitivity. Such arrays are often used in medical physics or security applications to detect X-rays or γ rays: high-Z, high density materials (e.g. LYSO, BGO) are typically preferred for this type of applications.
Scintillation in inorganic crystals is typically slower than in organic ones, ranging typically from 1.48 ns for ZnO(Ga) to ns for CaWO
4. Exceptions are CsF (~5 ns), fast BaF
2 (0.7 ns; the slow component is at 630 ns), as well as the newer products (LaCl
3(Ce), 28 ns; LaBr
3(Ce), 16 ns; LYSO, 41 ns).
For the imaging application, one of the advantage of inorganic crystals is very high light yield. Some high light yield scintillators above 100,000 photons/MeV at 662 keV are very recently reported for LuI
3(Ce), SrI
2(Eu), and Cs
2HfCl
6.
Many semiconductor scintillator phosphors are known, such as ZnS(Ag) (mentioned in the history section), CdS(Ag), ZnO(Zn), ZnO(Ga), CdS(In), ZnSe(O), and ZnTe(O), but none of these are available as single crystals. CdS(Te) and ZnSe(Te) have been commercially available in single crystal form, but their luminosity is partially quenched at room temperature.[19]
GaAs(Si,B) is a recently discovered cryogenic semiconductor scintillator with high light output in the infra-red and apparently no afterglow. In combination with ultra-low noise cryogenic photodetectors it is the target in experiments to detect rare, low-energy electronic excitations from interacting dark matter.[20][21][22][23][24][25][26]
Gaseous scintillators consist of nitrogen and the noble gases helium, argon, krypton, and xenon, with helium and xenon receiving the most attention. The scintillation process is due to the de-excitation of single atoms excited by the passage of an incoming particle. This de-excitation is very rapid (~1 ns), so the detector response is quite fast. Coating the walls of the container with a wavelength shifter is generally necessary as those gases typically emit in the ultraviolet and PMTs respond better to the visible blue-green region. In nuclear physics, gaseous detectors have been used to detect fission fragments or heavy charged particles.
The most common glass scintillators are cerium-activated lithium or boron silicates. Since both lithium and boron have large neutron cross-sections, glass detectors are particularly well suited to the detection of thermal (slow) neutrons. Lithium is more widely used than boron since it has a greater energy release on capturing a neutron and therefore greater light output. Glass scintillators are however sensitive to electrons and γ rays as well (pulse height discrimination can be used for particle identification). Being very robust, they are also well-suited to harsh environmental conditions. Their response time is ≈10 ns, their light output is however low, typically ≈30% of that of anthracene.
Scintillation properties of organic-inorganic methylamonium (MA) lead halide perovskites under proton irradiation were first reported by Shibuya et al. in and the first γ-ray pulse height spectrum, although still with poor energy resolution, was reported on ((C
6H
5(CH
2)
2NH
3)
2PbBr
4) by van Eijk et al. in . Birowosuto at al. studied the scintillation properties of 3-D and 2-D layered perovskites under X-ray excitation. MAPbBr3 (CH
3NH
3PbBr
3) emits at 550 nm and MAPbI3 (CH
3NH
3PbI
3) at 750 nm which is attributed to exciton emission near the band gap of the compounds. In this first generation of Pb-halide perovskites the emission is strongly quenched at room temperature and less than 1 000 ph/MeV survive. At 10 K however intense emission is observed and write about yields up to 200 000 ph/MeV. The quenching is attributed to the small e-h binding energy in the exciton that decreases for Cl to Br to I . Interestingly one may replace the organic MA group with Cs+ to obtain full inorganic CsPbX3 halide perovskites. Depending on the Cl, Br, I content the triplet X-ray excited exciton emission can be tuned from 430 nm to 700 nm . One may also dilute Cs with Rb to obtain similar tuning.
Above very recent developments demonstrate that the organic-inorganic and all inorganic Pb-halide perovskites have various interesting scintillation properties. However, the recent two-dimensional perovskite single crystals with light yields between 10 000 and 40 000 ph/MeV and decay times below 10 ns at room temperature will be more favorable as they may have much larger Stokes shift up to 200 nm in comparison with CsPbBr3 quantum dot scintillators and this is essential to prevent self reabsorption for scintillators.
More recently, a new material class first reported by Professor Biwu Ma's research group, called 0D organic metal halide hybrid (OMHH), an extension of the perovskite materials. This class of materials exhibits strong exciton binding of hundreds of meV, resulting in their high photoluminescent quantum efficiency of almost unity. Their large stoke shift and reabsorption-free properties make them desirable. Their potential applications for scintillators have been reported by the same group, and others. In ,(C38H34P2)MnBr4 was reported to have a light yield up to 80 000 Photon/MeV despite its low Z compared to traditional all inorganic. Impressive light yields from other 0D OMHH have been reported. There is a great potential to realize new generation scintillators from this material class. However, they are limited by their relatively long response time in microseconds, which is an area of intense research.
Transitions made by the free valence electrons of the molecules are responsible for the production of scintillation light in organic crystals. These electrons are associated with the whole molecule rather than any particular atom and occupy the so-called -molecular orbitals. The ground state S0 is a singlet state above which are the excited singlet states (S*, S**, ...), the lowest triplet state (T0), and its excited levels (T*, T**, ...). A fine structure corresponding to molecular vibrational modes is associated with each of those electron levels. The energy spacing between electron levels is ≈1 eV; the spacing between the vibrational levels is about 1/10 of that for electron levels.
An incoming particle can excite either an electron level or a vibrational level. The singlet excitations immediately decay (< 10 ps) to the S* state without the emission of radiation (internal degradation). The S* state then decays to the ground state S0 (typically to one of the vibrational levels above S0) by emitting a scintillation photon. This is the prompt component or fluorescence. The transparency of the scintillator to the emitted photon is due to the fact that the energy of the photon is less than that required for an S0 → S* transition (the transition is usually being to a vibrational level above S0).[clarification needed]
When one of the triplet states gets excited, it immediately decays to the T0 state with no emission of radiation (internal degradation). Since the T0 → S0 transition is very improbable, the T0 state instead decays by interacting with another T0 molecule:
T 0 + T 0 → S ∗ + S 0 + photons {\displaystyle T_{0}+T_{0}\rightarrow S^{*}+S_{0}+{\text{photons}}}
and leaves one of the molecules in the S* state, which then decays to S0 with the release of a scintillation photon. Since the T0-T0 interaction takes time, the scintillation light is delayed: this is the slow or delayed component (corresponding to delayed fluorescence). Sometimes, a direct T0 → S0 transition occurs (also delayed), and corresponds to the phenomenon of phosphorescence. Note that the observational difference between delayed-fluorescence and phosphorescence is the difference in the wavelengths of the emitted optical photon in an S* → S0 transition versus a T0 → S0 transition.
Organic scintillators can be dissolved in an organic solvent to form either a liquid or plastic scintillator. The scintillation process is the same as described for organic crystals (above); what differs is the mechanism of energy absorption: energy is first absorbed by the solvent, then passed onto the scintillation solute (the details of the transfer are not clearly understood).
The scintillation process in inorganic materials is due to the electronic band structure found in crystals and is not molecular in nature as is the case with organic scintillators. An incoming particle can excite an electron from the valence band to either the conduction band or the exciton band (located just below the conduction band and separated from the valence band by an energy gap; see picture). This leaves an associated hole behind, in the valence band. Impurities create electronic levels in the forbidden gap. The excitons are loosely bound electron-hole pairs which wander through the crystal lattice until they are captured as a whole by impurity centers.
The latter then rapidly de-excite by emitting scintillation light (fast component). The activator impurities are typically chosen so that the emitted light is in the visible range or near-UV where photomultipliers are effective. The holes associated with electrons in the conduction band are independent from the latter. Those holes and electrons are captured successively by impurity centers exciting certain metastable states not accessible to the excitons. The delayed de-excitation of those metastable impurity states again results in scintillation light (slow component).
BGO (bismuth germanium oxide) is a pure inorganic scintillator without any activator impurity. There, the scintillation process is due to an optical transition of the Bi3+
ion, a major constituent of the crystal. In tungstate scintillators CaWO
4 and CdWO
4 the emission is due to radiative decay of self-trapped excitons.
The scintillation process in GaAs doped with silicon and boron impurities is different from conventional scintillators in that the silicon n-type doping provides a built-in population of delocalized electrons at the bottom of the conduction band.[38] Some of the boron impurity atoms reside on arsenic sites and serve as acceptors.[39] A scintillation photon is produced whenever an acceptor atom such as boron captures an ionization hole from the valence band and that hole recombines radiatively with one of the delocalized electrons.[40]
Unlike many other semiconductors, the delocalized electrons provided by the silicon are not “frozen out” at cryogenic temperatures. Above the Mott transition concentration of 8× free carriers per cm3, the “metallic” state is maintained at cryogenic temperatures because mutual repulsion drives any additional electrons into the next higher available energy level, which is in the conduction band.[41] The spectrum of photons from this process is centered at 930 nm (1.33 eV) and there are three other emission bands centered at 860, , and nm from other minor processes.[42] Each of these emission bands has a different luminosity and decay time.[43] The high scintillation luminosity is surprising because (1) with a refractive index of about 3.5, escape is inhibited by total internal reflection and (2) experiments at 90K report narrow-beam infrared absorption coefficients of several per cm.[44][45][46]
Recent Monte Carlo and Feynman path integral calculations have shown that the high luminosity could be explained if most of the narrow beam absorption is actually a novel optical scattering from the conduction electrons with a cross section of about 5 x 10−18 cm2 that allows scintillation photons to escape total internal reflection.[47][48] This cross section is about 107 times larger than Thomson scattering but comparable to the optical cross section of the conduction electrons in a metal mirror.
In gases, the scintillation process is due to the de-excitation of single atoms excited by the passage of an incoming particle (a very rapid process: ≈1 ns).
Scintillation counters are usually not ideal for the detection of heavy ions for three reasons:
The reduction in light output is stronger for organics than for inorganic crystals. Therefore, where needed, inorganic crystals, e.g. CsI(Tl), ZnS(Ag) (typically used in thin sheets as α-particle monitors), CaF
2(Eu), should be preferred to organic materials. Typical applications are α-survey instruments, dosimetry instruments, and heavy ion dE/dx detectors. Gaseous scintillators have also been used in nuclear physics experiments.
The detection efficiency for electrons is essentially 100% for most scintillators. But because electrons can make large angle scatterings (sometimes backscatterings), they can exit the detector without depositing their full energy in it. The back-scattering is a rapidly increasing function of the atomic number Z of the scintillator material. Organic scintillators, having a lower Z than inorganic crystals, are therefore best suited for the detection of low-energy (< 10 MeV) beta particles. The situation is different for high energy electrons: since they mostly lose their energy by bremsstrahlung at the higher energies, a higher-Z material is better suited for the detection of the bremsstrahlung photon and the production of the electromagnetic shower which it can induce.
High-Z materials, e.g. inorganic crystals, are best suited for the detection of gamma rays. The three basic ways that a gamma ray interacts with matter are: the photoelectric effect, Compton scattering, and pair production. The photon is completely absorbed in photoelectric effect and pair production, while only partial energy is deposited in any given Compton scattering. The cross section for the photoelectric process is proportional to Z5, that for pair production proportional to Z2, whereas Compton scattering goes roughly as Z. A high-Z material therefore favors the former two processes, enabling the detection of the full energy of the gamma ray. If the gamma rays are at higher energies (>5 MeV), pair production dominates.
Since the neutron is not charged it does not interact via the Coulomb force and therefore does not ionize the scintillation material. It must first transfer some or all of its energy via the strong force to a charged atomic nucleus. The positively charged nucleus then produces ionization. Fast neutrons (generally >0.5 MeV ) primarily rely on the recoil proton in (n,p) reactions; materials rich in hydrogen, e.g. plastic scintillators, are therefore best suited for their detection. Slow neutrons rely on nuclear reactions such as the (n,γ) or (n,α) reactions, to produce ionization. Their mean free path is therefore quite large unless the scintillator material contains nuclides having a high cross section for these nuclear reactions such as 6Li or 10B. Materials such as LiI(Eu) or glass silicates are therefore particularly well-suited for the detection of slow (thermal) neutrons.
EBO contains other products and information you need, so please check it out.
The following is a list of commonly used inorganic crystals:
The most widely used scintillation material for gamma-ray spectroscopy NaI(Tl) is hygroscopic and is only used in hermetically sealed metal containers to preserve its properties. All water soluble scintillation materials should be packaged in such a way that they are not attacked by moisture. Some scintillation crystals may easily crack or cleave under mechanical pressure whereas others are plastic and only will deform like CsI(Tl).
In table 3.1 below, the most important aspects of commonly used scintillation materials are listed. The list is not extensive and new materials are developed regularly.
Physical properties of the most common scintillation materials
Material Density(g/cm3)
EmissionMaximum
(nm)
DecayConstant
(1)
RefractiveIndex
(2)
ConversionEfficiency
(3)
Hygroscopic NaI(Tl) 3.67 415 0,23 µs 1.85 100 yes CsI(Tl) 4.51 550 0,6/3.4 µs 1.79 45 slightly CsI(Na) 4.51 420 0.63 µs 1.84 85 yes CsI(Undoped) 4.51 315 16 ns 1.95 4-6 no Cs2LiYCl6:Ce(CLYC)
3.31 275-450 nm 1,50, ns 1.81 30-40 yes CaF2(Eu) 3.18 435 0.84 µs 1.47 50 no LaCl3:Ce(0.9) 3.79 350 70 ns 1.90 95-100 yes SrI2(Eu) 4.60 450 1-5 µs 1.85 120-140 yes LaBr2.85Cl0.15:Ce (LBC) 4.90 380 35 ns 1.90 140 yes 6Li-glass 2.6 390/430 60 ns 1.56 4-6 no Cs2LiLaBr4.8Cl1.2 Ce (CLLBC)
4.08 420 120 ns220
0.63 µs/0.8 ns
1501.54
165
no CeBr3 5.23 370 18 ns 1.9 130 yes YAP(Ce) 5.55 350 27 ns 1.94 35-40 no LYSO:Ce 7.20 420 50 ns 1.82 70-80 no BGO 7.13 480 0.3 µs 2.15 15-20 no CdWO4 7.90 470/540 20/5 µs 2.3 25-30 no PbWO4 8.28 420 7 ns 2.16 0.20 no Plastics(*) 1.023 375-600 ns range 1.58 25-30no
(1) Effective average decay time for γ-rays.
(2) At the wavelength of the emission maximum
(3) Relative scintillation signal at room temperature for γ-rays when coupled to a photomultiplier
tube with a bi-alkali photocathode.
(*) approximate data
Each scintillation crystal has its own specific application. For high resolution γray spectroscopy, NaI(Tl), or CeBr3 (high light output) are often used. For high energy physics applications, the use of bismuth germanate Bi4Ge3O12 (BGO) crystals (high density and Z) or Lead Tungstate (PbWO4) improves the lateral confinement of the shower. For the detection of β-particles, CaF2(Eu) or YAP:Ce can be used instead of plastic scintillators (higher density).
Scintillation materials and their most common applications
Material Important properties Major Application NaI(Tl) Very high light output, good energy resolution General scintillation counting, Health Physics, environmental monitoring, high temperature use CsI(Tl) Non-hygroscopic, rugged Particle and high energy physics, general radiation detection, photo diode readout, CsI(Na) High light output, rugged Geophysical, general radiation detection CsI(Undoped) Fast, non-hygroscopic Physics (calorimetry) CaF2(Eu) Low Z, high light outputβ detectors, α/β phoswiches β detectors, α/β phoswiches Cs2LiYCl6:CeNaI(Tl) scintillation crystals are used in a great number of standard applications for detection of γ-radiation because of their high light output and the excellent match of the emission spectrum to the sensitivity of photomultiplier tubes, resulting in a good energy resolution. In addition NaI(Tl) is a relatively inexpensive scintillator. NaI(Tl) crystals show a distinct non proportionality (see below) which results in a limitation of the energy resolution at 662 keV to about 6% FWHM, NaI(Tl) crystals can be grown to large dimensions (400 mm diameter) in ingots of many hundreds of kg. The material can be cut in a great variety of sizes and shapes and cleaved in small diameters.
CsI(Tl) has the advantage that it not really hygroscopic (its surface however is influenced by humidity on the long term),and does not cleave or crack under stress. It is a relatively bright scintillator but its emission is located above 500 nm where PMTs are not that sensitive. However due to this property it can effectively be read out by silicon photodiodes or SiPms. Thanks to its different decay times for charged particles having a different ionizing power, CsI(Tl) crystals are frequently used in arrays or matrices in particle physics research.
CsI(Na) is a hygroscopic high light output rugged scintillator Like CsI(Tl) mainly used for applications where mechanical stability and good energy resolution are required. Below 120 oC it is an alternative to NaI(Tl). CsI(Na) has its emission peaking at 400 nm like NaI(Tl).
Undoped (pure) CsI is an intrinsic scintillator with same density and Z as CsI(Na). It has en emission at approx. 300 nm and since it intensity is strongly thermally quenched at room temperature it is relatively fast (ns decay time). There is a slow component present in this crystal that makes up at least 10% of the total light yield. The emission spectra below show how the emission spectrum of a scintillator can be influenced by its type of activation.
CaF2(Eu) , Europium doped calcium fluoride is a rather old low density scintillation crystal . Thanks to its low Z value it is well suited for the detection of electrons (beta particles) with a high efficiency (low backscatter fraction). CaF2(Eu) is a relatively slow scintillator that is not hygroscopic and inert to many chemicals. It is brittle and cleaves relatively easy.
(6) LiI(Eu) is used for the detection of thermal neutrons via the reaction
The total Q-value of the alpha and the triton is 4.78 MeV. The resulting thermal neutron peak can be found at a Gamma Equivalent Energy larger than 3 MeV. This allows to separate neutron interactions from gamma events (< 2.6 MeV). Since the typical absorption length (90%) of thermal neutrons in 6-LiI(Eu) crystals is only 3 mm the efficiency for gamma rays can be made small. LiI(Eu) crystals are grown up to 25 mm in diameter.
6-Li glass scintillators offer the same possibility as 6LiI(Eu) crystals to detect thermal neutrons. However, The light output is much lower than of LiI(Eu) scintillators and therefore the neutron peaks are relative broad. In addition the scintillation efficiency for the resulting particles is low so that the neutron peak appears at a location of approximately 1.6 MeV in the gamma energy spectrum. 90% of thermal neutrons are absorbed in only1 mm of material.
All 6-Li containing scintillators can also be used for the detection of fast neutrons but the efficiency of the nuclear reaction is smaller.
Further details on neutron detection can be found in the application note “neutron detection with scintillators”.
Barium Fluoride (BaF2) is a non-hygroscopic scintillator with a very fast decay component located at 220 nm. To detect this component, light detectors with quartz windows are used.
Barium fluoride detectors allow fast sub-nanosecond timing for example for positron life time measurements. It is a weak scintillator with a modest energy resolution at 662 keV (typically about 10-12 % FWHM @ 662 keV.
BGO (Bi4Ge3O12) has the extreme high density of 7.13 g/cm3 and has a high Z value which makes these crystals very suited for the detection of natural radioactivity (U, Th, K), for high energy physics applications (high photo fraction) or in compact Compton suppression spectrometers. Since the light output of BGO is modest, the energy resolution is inferior to that of the the standard alkali halides like NaI(Tl) or CsI(Tl).
YAP:Ce (YAlO3:Ce) is a high density (5.5 g/cm3) oxide crystal with a decay time about 10 times shorter than NaI(Tl) (23 ns) It is used in detectors for high count rate (up to several MHz) The non-hygroscopic nature of this material allows the use of thin mylar entrance windows. YAP:Ce can withstand gamma doses up to 104 Gray.
High resolution (proportional) scintillators
Currently there is an increased better understanding of the properties of scintillators and what determines their intrinsic energy resolution. A number of materials have been developed that exhibits a more proportional response to gamma rays than the classic alkali halides (NaI(Tl), CsI(Tl) etc). This has resulted in the availability of a class of proportional scintillators. New materials are being developed constantly and the list below is not extensive.
Bright proportional scintillator scan have energy resolutions around 3-4 % at 662 keV gamma rays under optimum light detection conditions. Just as other scintillators each have some advantages and disadvantages. Some typical proportionality curves are shown below:
Ref. W. Mengesha, T.D. Taulbee, B .D. Rooney, and J.D. Valentine.Light Yield
Nonproportionality of CsI(Tl), CsI(Na), and YAP IEEE Trans. Nucl. Sci. vol 45, no. 3,
() pp. 456–461
Proportional scintillators only offer their superior performance in energy resolution when the light detection is optimized by covering the largest possible area with light detector (PMT or SiPm).
LBC (Lanthanum BromoChloride) LaBr2.85Cl0.15:Ce scintillators have similar properties to the well-known LaBr3:Ce crystals. Energy resolutions around 3.0% FWHM (662 keV) are standard and the material is mechanically a little stronger than LaBr3. LBC crystals suffer from the same La-138 background as LaBr3
CeBr3 (Cerium Bromide) scintillators are characterized by a relatively high density and Z and a proportional response to gamma rays. Typical energy resolutions are 4% FWHM for 662 keV.
The material exhibits a fast decay of typical 20 ns (for 51 mm crystals) with a negligible afterglow. CeBr3 is highly hygroscopic and provides the best performance when integrally coupled to PMTs. Thanks to its fast light pulse rise time, CeBr3 detectors can provide sub nanosecond time resolutions, slightly worse than BaF2 detectors. With CeBr3 scintillators the 609 and 662 keV gamma lines from respectively radium and Cs-137 can easily be separated.
Cs2LiYCl6:Ce (CLYC) scintillation crystals offer a reasonable density of 3.3 g/cc. This proportional crystal offers an energy resolution of 4.5 – 5 % FWHM for 662 keV gamma rays. The thermal neutron peak due to the n-6Li reaction produces a narrow peak at approximately 3.3 MeV. Its fast scintillation component is not excited by neutrons which opens PSD capabilities or further improve the neutron/gamma separation. CLYC has some slower emission components so larger signal shaping times are required. To absorb 90% of thermal neutron 12.5 mm of crystal is needed.
Cesium Lanthanum Lithium BromoChloride) CLLBC , Cs2LiLaBr4.8Cl1.2:Ce scintillators have properties to the well-known LaBr3:Ce crystals. Energy resolutions around 3 % FWHM (662 keV) are standard. In addition, thanks to the presence of Lithium, the material can be used for neutron detection with a sharp thermal neutron peak between 3.1- 3.2 MeV. In addition, CLLBC offers excellent neutron / gamma discrimination using PSD.
SrI2(Eu), Europium doped strontium iodide Is a very bright relatively slow scintillator with a very good proportionality. Typical energy resolutions are 3.5% @ 662 keV and 6% @ 122 keV. The material is quite radiopure. Due to its intrinsic self-absorption (small stokes shift), the crystal requires some special surface preparation techniques. The long decay time requires very long (digital) shaping time constants (> 10 µs) which complicates high count rate behavior. The self-absorption limits the maximum size of the crystal to approx. 4 cm.
.
Organic (plastic) scintillators
Organic scintillators (also called “plastic scintillators”) consist of a transparent host material (a plastic) doped with a scintillating organic molecule (e.g. POPOP : pbis [2(5phenyloxazolyl)] benzene). Radiation is absorbed by the host material, mostly via Compton effect because of the low density and Z value of organic materials. Therefore, plastic scintillators are mostly used for the either detection of β and other particles or when very large volumes are needed since their material cost is relatively low.
Plastic scintillators are mainly used when large detector volumes are required e.g. in security or health physics applications. The cost of plastic scintillation detectors (per volume) is much smaller than that of e.g. NaI(Tl) detectors; plastic scintillators can be manufactured in several meter long slabs.
There exists a large number of different organic scintillators each with specific properties, the materials listed on the SCIONIX web site here are a direct copy of the ELJEN website . SCIONIX is the European representative of ELJEN Technology.
Organic scintillators can be doped with specific atoms like 6-Lithium (EJ-270) or Boron (EJ254) to make them neutron sensitive or with Pb (EJ-256) to improve the response at lower energies (tissue equivalent). This influences the scintillation properties.
Also, plastic scintillators exist that can be used to discriminate gammas from fast neutrons via pulse shape analysis which is used in physics research and in some security applications. An example is EJ-276 (successor of EJ-299-33). See the datasheet on these materials.
Liquid scintillators
Also doped liquids are used as scintillators. Some liquid scintillators like EJ301 or EJ309 offer fast neutron/ gamma discrimination properties based on their scintillation pulse shape. Using proper electronic techniques (digitizers), neutron pulses can be discriminated from gammas.
Liquid scintillation detectors need provisions to allow expansion of the liquids under temperature variations. For further information see the technical datasheet of liquid scintillators.