Etching Solution For PCB: Wet vs. Dry Etching for Circuit Board Traces

11 Aug.,2025

 

Etching Solution For PCB: Wet vs. Dry Etching for Circuit Board Traces

As printed circuit boards become more complex, the impedance requirements for different traces or copper lines have increased. Therefore, you need stricter control over the width of the lines, which highlights the etching solution for PCB. PCB etching has and continues to evolve, and we will analyze the process and its types below. Take a look!

JYN are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

What is PCB Etching?

PCB etching is a process involving the removal of unwanted copper from the circuit board to create circuit patterns or copper traces. Before the etching process, manufacturers use the design file to define the board's circuit pattern layout. After that, they transfer this image to the PCB using a process known as photolithography. This image creates a blueprint to determine the areas in the copper layer that need etching and the ones that should remain on the board to form the patterns.

A monocrystalline silicon wafer with microchips after photolithography

Usually, manufacturers use tin plating to create this image (etch resist) on outer PCB layers to secure the copper areas that should not undergo etching. On the inner layers, they use photoresist as the etch-resist material.

There are two methods to eliminate the excess copper after placing these protective layers. They are dry and wet etching processes.

Dry Etching

The dry etching process does not use chemical solutions to dissolve copper. It creates plasma (positively charged gas) in a vacuum to shave off the excess copper.

The process is more complex than wet etching and requires dedicated etching machines to eliminate the excess copper material. Also, it does not produce any residue, is more flexible, and can achieve more precise material removal directionally.

A PCB trace wiring design

More importantly, it is cleaner and requires less training, making it the preferred option for critical and agile manufacturing processes, such as those used in manufacturing microelectronics.

The most typical dry etching technique is Reactive Ion Etching (RIE).

Advantages of Dry Etching

  • Environmentally friendly and safer
  • Excellent at cleaning and removing organic materials on the copper surface
  • Enhances the etched material's physical properties
  • Creates volatile by-products
  • It does not alter any property of the copper metal.

Wet Etching

Wet PCB etching involves immersing the PCB in a chemical solution to remove the unwanted copper. The PCB etching process can employ two methods depending on the PCB etching solution. They include acidic and alkaline methods.

Chemical etching of a PCB

Acidic Etching

With the acidic method, fabricators use an acidic solution to etch the inner layers of rigid PCBs because it does not react with photoresist.

Compared to the alkaline etching method, acids do not create many undercuts. So the process is more precise. An undercut is a lateral erosion of the copper layer that occurs under the protective photoresist or tin material.

PCB etching using an acidic solution

Also, acidic etching is cheaper and does not corrode crucial sections on the circuit's blueprint. However, it is more time-consuming than its alkaline counterpart.

The solutions used for acidic etching include the following.

Etching Solution For PCB: Cupric Chloride

Cupric chloride is the most typical acidic etchant because it dissolves tiny features accurately. Additionally, the solution gives a constant etching rate and continuous regeneration at a lower cost.

Manufacturers can increase the etch rate of the cupric chloride solution by using a cupric chloride-HCl chloride sodium system. This combination increases the maximum etching rate of 55s for one ounce of copper at °F.

PCB tracks up close

However, you must adhere to safety and emergency protocols when handling chlorine gas and should work in a well-ventilated room with cylinder storage, a tank, and leak-detection sensors.

Also, you will need personal protective equipment, approval from your area's fire department, and trained operators.

Etching Solution For PCB: Ferric Chloride

This solution has the following benefits as a commercial etchant.

  • Easy to use
  • High copper holding capacity
  • Ideal for handling infrequent batches

However, it is not a common PCB etchant because of the high cost of disposing of the copper-saturated etchant as a hazardous waste product from the process.

PCB etching in a ferric chloride solution

Usually, manufacturers use it with photoresist, gold patterns, and screen ink because it is highly corrosive. Therefore, you cannot use the solution on tin or tin/lead resists.

In most cases, you must dissolve the ferric chloride solution in water to a concentration of 28-42% by weight. After that, add about 5% HCl to the mix to avoid the formation of insoluble ferric hydroxide precipitates. The final acid concentration for the solution used for commercial purposes is about 1.5-2%.

Alkaline Etching Process

The alkaline etching process uses only one chemical solution containing the following.

Chloride Copper + Hydrochloride + Water + Hydrogen Peroxide

This solution is highly corrosive, meaning it etches the board quickly and can damage it if you leave the PCB in the solution for a long time. Therefore, you must follow the parameters used in the process to the letter for precise control. And the procedure is expensive compared to acidic etching.

A photolithography slide for a semiconductor crystal

How Alkaline Etching Occurs

The process occurs in a high-pressure spray chamber with conveyors where the PCB gets exposed to a refreshed etchant spray. The following factors are crucial to creating uniform traces with minimal errors and straight sidewalls.

  • Panels movement rate
  • Etching chemical spray
  • How much copper needs removal from the board

After eliminating every part of the excess copper, this alkaline etching process hits a point known as the breakpoint, where the procedure is complete. It usually occurs at the midpoint section through the conveyor spray chamber. For instance, if this chamber is one meter long, the breakpoint milestone will be at the 50 cm mark.

Parameters Defining the Quality of Etching Solutions For PCB

The following factors affect the etchant quality and smoothness of the wet etching process.

Temperature

High temperatures generally increase an etchant's etch rate, but the etching machine will constrain the achievable temperature. Most of these machines have plastic parts to avoid corrosion from the etchant chemical solutions. Therefore, the temperatures usually don't exceed 55°C to avoid melting these components.

Baume

Baume (Be) defines the molarity concentration in an etchant, and it depends on the solution's specific gravity. A high Be implies the solution has a high etchant molarity and dissolving rate. High Baume values also reduce undercuts.

Chemical Additives

Chemical additives increase the etch rate in commercial etching solutions. HCl is the most typical additive in acidic solutions because it acts as the source of chlorine to create metal chlorides instead of hydroxides.

The extra chlorine increases the solution's ability to hold the dissolved copper. You can introduce the additive to the acidic solution before first use or during regeneration, and you must measure the pH to check the solution's acidity before use.

The etching machine restricts the additives you can introduce to the solution because chlorine increases corrosiveness.

Oxidation-Reduction Potential (ORP)

The oxidation-reduction potential of an etchant is a measure of its relative conductivity in millivolts. This potential brings out the relationship between the following.

  • Ferrous and ferric ions
  • Cuprous and cupric ions

As the copper gets etched, the chemical solution changes from cupric or ferric to cuprous or ferrous. The higher the ORP value, the more efficient and faster the etchant operates.

If you want to learn more, please visit our website PCB Wet Process Solutions.

Adding additives (free acids) and oxidizers to the solutions increases chlorine levels. The chlorine converts the cuprous and ferrous ions back to cupric and ferric ions, making the etchant more potent.

pH

The pH variable is crucial for alkaline etching because it should fall between 7.9 and 8.1 for reliable etching. Low pH levels below 8 are usually due to low ammonia, excessive ventilation, or heating.

And a high pH that exceeds 8.8 can be due to under ventilation, water in the etchant solution, or high copper content. Both these conditions reduce the etch rate.

With acid etching, high pH levels create incorrect copper colorimeter readings due to solution turbidity.

Advantages of Wet Etching

  • Cheaper than dry etching
  • Creates a uniform surface
  • More adaptable
  • Offers impeccable selectivity with high precision, hence ideal for inner layers
  • Higher etching rate compared to dry etching
  • Easy to maintain wet etching equipment
  • Can take place under normal atmospheric conditions (does not require a vacuum)

Wrap Up

Ultimate Guide to Cleaning Electronics: Improve PCB Reliability ...

What Is Ionic Contamination?

What is Polar Contamination?

Ionic contaminants are remains of flux that are left behind during the assembly process. Ionic compounds are held together by electrostatic forces and the compound itself has a zero net charge. These materials will disassociate when exposed to water.  These are composed of positively charged cations and negatively charged anions.  A simple example is table salt (sodium chloride), composed of a single positive sodium cation which lacks one electron, and a negatively charged chloride anion (Cl), which has an extra electron.  Polar compounds, on the other hand, can have a positive charge on one side of the molecule and a negative charge on the other side of the molecule; these molecules never split apart. Water and Isopropanol (or IPA) are examples of polar molecules.

When populating the board with components, the components themselves can carry various ionic/conductive contaminants to your assembly including cutting oils/fluids, biocides, and corrosion preventatives. Be aware of common nonionic materials that can also affect the assembly steps – process oils, mold releases, etc. can be detrimental down the line.

What Are The Most Common Ionic Contaminants From The Bare Board Fabrication?

Common Moisture Trapped in the “Layering” Process

Water is a polar contaminant.  It is conducive for dissociating other ionic materials which then lays the foundation for conductive mishaps (dendritic growth, ECM, etc).  It is common practice to “bake” the boards to remove extraneous moisture.

Corrosion from PCB fabrication contamination (photo courtesy of Foresite)

Etching Chemicals

Etching chemicals are highly conductive and can be corrosive as well. They must be chemically neutralized and removed/rinsed and are well-known as sources for current leakage. 

Flux Residues from Soldering

Heavy no-clean flux residue with visible copper corrosion (photo courtesy of Foresite)

Everyone is familiar with flux residues. Fluxes, whether in liquid, cored wire, or compounded as a paste, can leave residues that can cause serious reliability defects if not removed. Common conductive flux residues from the soldering process can include various unreacted activators, binders, rheology components, and saponifiers. Among these are numerous iterations of acids (abietic, adipic, succinic among others), highly basic ingredients (amino compounds), and even constituents found in “soaps” such as phosphate and sulfate ions. All of these must be cleaned from the substrate, whether by strict solvent cleaning such as vapor degreasing or by aqueous chemistries in the common batch or inline cleaners seen on the manufacturing floor.

Inter-Layer Residues from Drilling and Via Plating Processes

Dendritic grown between solder pads, caused by ionic contamination (photo courtesy of Foresite)

In addition, residues from the cleaning process chemistry itself must also be removed.  This is noticed more in the aqueous cleaning systems.  Many use saponifiers to neutralize and emulsify the flux residues and make them easier to rinse and remove from the substrate.  These components themselves are highly polar and ionic and can also enhance the dendrite and/or ECM mechanism if not removed.  In addition, corrosion preventatives and surfactants are commonly employed in these products.  This is not a bad thing in itself, but care must be taken to ensure they are removed along with the soils during the cleaning process.

How Do You Perform Ionic Contamination Testing?

Poor quality control in fabrication, poor soldering or component population, and even final cleaning stages are all potential sources of contamination. Many of these can be found by ionic contamination testing and analysis such as ROSE testing, ion extraction, and chromatography. Initial high humidity validation testing at the beginning of the project can also identify potential issues. 

Strict quality control and standard operating procedures during the PCB assembly, manufacturing stages, and validation testing can go a long way in preventing a reliability nightmare. Just think – simple mishandling of a part by an operator not using gloves can transfer salts and oils from skin to the substrate that could potentially be catastrophic for your item!

What is White Residue on an Electronic Circuit Board?

White residue is generally a symptom of ineffective PCB cleaning. Common conductive flux residues from the soldering process can include various unreacted activators, binders, rheology components, and saponifiers. Among these are numerous iterations of acids (abietic, adipic, and succinic among others), highly basic ingredients (amino compounds), and even constituents found in “soaps” such as phosphate and sulfate ions. When a cleaner does not fully dissolve all the constituents, or the cleaner is not allowed to flow off the PCB, the remaining solvent can evaporate off and leave behind residue that is either white or like water spots.

White flux residue with visible copper corrosion (photo courtesy of Foresite)

How Do You Remove White Residue From an Electronic Circuit Board?

White residues can generally be cleaned by a flux remover. If the residues are the result of insufficient solvency of the original cleaning process, a stronger solvent cleaner may be required. Often agitation is required to remove the residues, which may include a wipe, swab, brush, or an aerosol with a brush attachment. Follow these steps to remove white residue:

  1. Spray the residue with a strong solvent.
  2. While the area is still wet, scrub with a clean tool like a wipe, swab, or brush.
  3. Spray the cleaned area and surrounding areas with the same solvent, angling the board so the rinse is able to run off.

Flux-Off® Rosin with a brush attachment

What are the Different Methods of Cleaning Electronic Circuit Boards?

PCB flux removal can either happen at the benchtop, which generally requires a manual cleaning method, or in automatic or semi-automatic processes. This is common for low volume electronic PCB assembly, rework, and repair. Manual cleaning methods are generally more laborious and less repeatable, so results may vary from operator to operator. For higher volume assembly or reduced variability, more automated cleaning methods are used.

Manual Flux Removal Methods

  • Aerosol– Aerosol flux removers have the advantage of a sealed system (ensuring fresh solvent) and agitation (provided by the spray pressure and pattern). A straw attachment is generally included to spray into areas with greater precision.
  • Aerosol w/brush attachment– A brush can be added to the aerosol nozzle, so the solvent sprays through the brush as you scrub.
  • Trigger spray– Trigger spray bottles are more common for water-based cleaners and isopropyl alcohol (IPA), but not for aggressive solvent cleaners.
  • Liquid immersion– The PCB can be immersed into a tray or bucket of solvent cleaner, with cleaning tools like swabs and brushes used as needed for tenacious soils. Cleaning performance can be further improved by heating the solvent but this should only be done with nonflammable flux removers.
  • Spot cleaning with a swab– A cotton or foam swab can be saturated with a mild solvent like isopropyl alcohol, often from a pump dispenser or “dauber”.
  • Presaturated wipes and swabs– For added convenience, wipes and swabs are available presaturated with a mild solvent like isopropyl alcohol.

Automated or Semi-Automated Flux Removal Methods

  • Ultrasonic– Ultrasonic cleaning equipment use sound waves to create implosions within the flux residue, breaking it apart and lifting it off the PCB. Most equipment have the option of heating the solvent to increase cleaning performance. Only use this option with a nonflammable flux remover. Cross-contamination can be a concern so change the solvent regularly. Ultrasonic cleaning might be too rough on sensitive components like ceramic-based resisters.
  • Vapor degreaser– Vapor degreasing is the go-to process for the highest precision cleaning, as in aerospace and medical electronics. PCBs can be submerged in a sump of boiling solvent, in a rinse sump with ultrasonics, or rinsed in solvent vapors. Special solvents need to be used that are azeotropes or near-azeotropes, so will not change as the solvents are boiled off and reconstituted in a continuous cycle.
  • Batch flux remover– This is basically a dishwasher for electronic circuit boards. PCBs are stationary in a rack, and the flux remover (usually water-based) is sprayed over the assembly. The PCB stays in place as the machine goes through the wash, rinse and dry cycles.
  • Inline flux remover– An inline washer is more like a carwash for electronic circuit boards. PCBs travel on a conveyor through wash, rinse and dry zones. Water-based flux removers are used.

Does the Flux Type Affect the Effectiveness of the PCB Cleaning Process?

The type of flux can have a big impact on the cleaning process. R, RA and RMA fluxes are generally easier to remove with standard flux removers and isopropyl alcohol. No-clean fluxes are intended to stay on the PCB, so can be more difficult to remove. They may require a more aggressive solvent flux remover, additional agitation like brushing, or a heated solvent. Aqueous fluxes are generally designed to be removed in a batch or inline cleaning system with straight deionized water or water with a saponifier. Alcohol-based or specially formulated solvents can also be used to clean aqueous fluxes, but the same cleaners may have mixed results on other types of fluxes.

The short answer is to match the flux remover with the flux type. However, this can be challenging for an EMS supplier that may have to use a variety of fluxes as required by their various customers. Flux removers are available that can break down a large variety of fluxes while changing the variables, like cleaning time, agitation, or additional heat, can treat distinctive needs adroitly.

For water-based cleaners in batch or inline cleaning systems, cleaner concentration can be adjusted, cycle time increased, and temperature increased to improve performance against various flux types.

What Factors Cause Difficulty Cleaning Flux Residues from PCBs?

Any process engineer will tell you that the key to designing a repeatable process is to control the variables. When removing flux from electronic circuit boards, there are a number of variables that can drastically change the cleaning performance of a cleaner and process:

  • Flux type – The type of flux can have a big impact on the cleaning process. R, RA and RMA fluxes are generally easier to remove with standard flux removers and isopropyl alcohol. No-clean fluxes are intended to stay on the PCB, so can be more difficult to remove. They may require a more aggressive solvent flux remover, additional agitation like brushing, or a heated solvent. Aqueous fluxes are generally designed to be removed in a batch or inline cleaning system with straight deionized water or water with a saponifier. Alcohol-based or specially formulated solvents can also be used to clean aqueous fluxes, but the same cleaners may have mixed results on other types of fluxes.
  • Higher solids flux – Cleaning a PCB made with a mix of soldering technologies can be a particular challenge. Tacky fluxes or other types with a high level of solids can be more challenging to clean, require more cleaning time, soak time, or additional agitation.
  • Amount of flux – A thicker layer of flux residue is more soil to remove and can create flux dams under low stand-off components. This prevents flux remover from fully penetrating under the component.
  • Soldering temperature – Higher temperatures have a greater tendency to bake-on flux residues, making them more difficult to remove. High temperature soldering may require more cleaning time, soak time, or additional agitation.
  • Lead-free solder> – Lead-free soldering generally requires higher soldering temperature and more highly activated fluxes. Flux residues left from a lead-free soldering process may require more cleaning time, soak time, or additional agitation, and you may actually have to consider a more aggressive flux remover that is engineered for lead-free processes.
  • Time between soldering and cleaning process – It is not unusual to finish the assembly on Friday, come back on Monday to clean and be surprised with white flux residues. As flux residues sit on the PCB, volatiles continue to flash off and it becomes more difficult to remove.

If you are suddenly surprised by white residues or some other clear evidence of a cleaning problem that didn’t exist before, step back and look at your process before calling for help. Has anything changed? That will be the first question a technician will ask, and necessary to know before you can identify and solve the problem.

How do you clean a PCB after soldering?

How do you remove solder flux?

The most common way to clean flux residues from a repair area is to saturate a cotton or foam swab with isopropyl alcohol or another cleaning solvent, and rub it around the repair area. While this may be adequate for no-clean flux, where the goal is a visually clean PCB, this may not be clean enough when more heavily activated fluxes are involved, like RA or aqueous. The dirty little secret is that flux residues will not evaporate along with the solvent. You may dissolve the flux, and some of the residues will soak into the swab, but most of the residues will settle back onto the board surface. Many times these white residues are more difficult to remove than the original flux.

Flux residues don't evaporate along with the solvent.

One quick and easy improvement to this process is to rinse the board after swabbing around the repair area. While the solvent is still wet, spray over the entire board with an aerosol flux cleaner. Hold the PCB at an angle to allow the solvent to flow over the board and run off, along with any residues that are picked up.

The straw attachment that comes with aerosol flux removers is a good way to increase the spray force and penetrate under the components.

Aerosol with straw good for cleaning under components

Chemtronics offers the BrushClean™ system with many of their flux removers. The cleaning solvent sprays through the brush, so agitation can be increased by scrubbing while spraying. To absorb the flux residues, a lint-free poly-cellulose wiper can be placed over the repair area, and the spraying and scrubbing can occur over the material. Then remove the wipe and brush attachment, and spray over the board for the final rinse.

Aerosol brush attachment over a wiper dissolves and absorbs flux residues at the same time.

For more information, please visit Stencil Cleaning Machine.